RISK ASSESSMENT METHODOLOGY FOR SALMON (RAMS)

Isobel Pearsall, Kim Hyatt, Wilf Luedke DFO

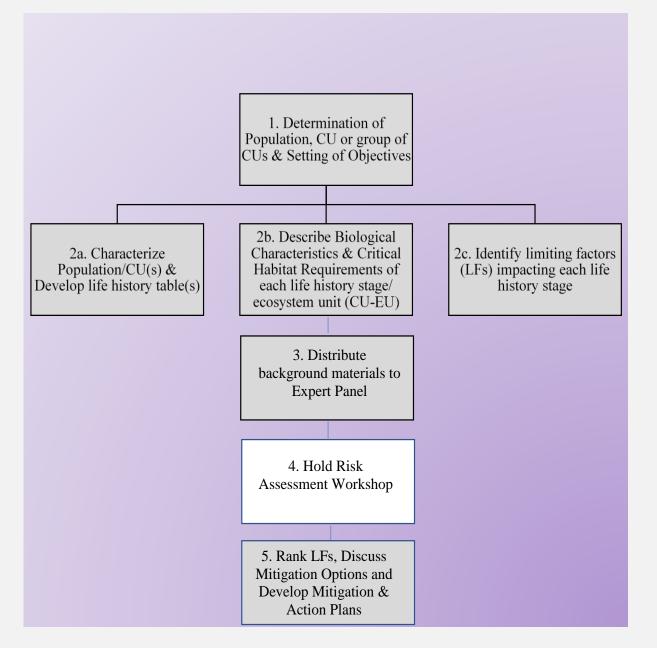
Emerging Cumulative Effects Assessment Approaches for Salmon Watersheds November 18 2020

RAMS

- What is RAMS?
 - A method designed to determine and prioritize the factors limiting the productive capacity of Pacific Salmon stocks/ populations/ CUs
 - Adapted from Hobday et al. (2007) approach
- Why?
 - DFO's Wild Salmon Policy objectives
 - Fisheries Act requirements under Bill C-68 need to assess risk of cumulative impacts from multiple categories of threats
- How?
 - A process based on Vision/goals -> Status -> Limiting Factors -> Options -> Action Plan
 - Integrating expertise from stock and habitat specialists with LEK/IK to achieve consensus on risks and actions
 - Simple, scalable, adaptive, precautionary and repeatable process

WHERE: VARIOUS SCALES

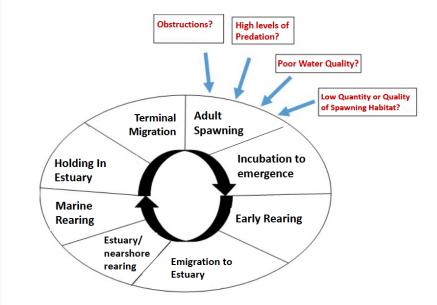
- Cowichan Chinook
- Sakinaw Sockeye
- WCVI Chinook Management Unit:
 - SWVI CU; 11 watersheds in San Juan, Barkley, Clayoquot.
 - Nootka-Kyuquot CU; 7 watersheds
 - Quatsino CU; planned
 - Marine RAMS begun
- WCVI Sockeye:
 - 3 Sockeye CUs in Barkley
 - Kennedy Lake Sockeye CU
- Nanaimo River Chinook
- Salmon River Coho, Nicola Watershed Chinook planned



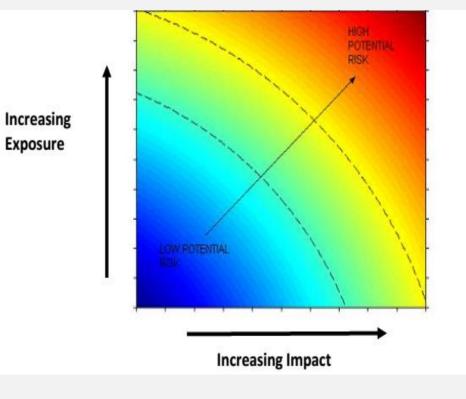
RAMS PROCESS SIMPLIFIED

Winning conditions require:


- Effective Governance
- Policy Framework
- Knowledge to id risks
- Willingness to act
- Funding
- Capacity to monitor


WHAT ARE LIMITING FACTORS?

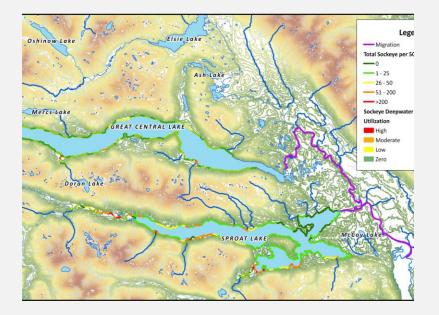
- Alternative hypotheses for losses of productivity and capacity resulting in declines
- LFs impact critical habitat and different life history stages of Pacific salmon

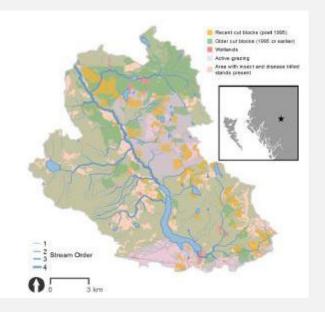


HOW TO ASSESS RISK

- Risk = Exposure*Consequence
- Exposure (likelihood) 1-5- spatial, temporal
- Consequence (impact) 1-5
- 2 time passes- current & 50 years into future

RAMS USES A LIFE CYCLE MODEL TO ASSESS BENEFIT OF REDUCING MORTALITY AT EACH LIFE STAGE.


time period	life stage	Chinook	Mortality	Potential limiting factors
March - July	terminal return	500	10.0%	LF1: estuary predation
April - July	upstream migration		3.0%	LF2: delay or limited access; LF3: obstructions; LF4: aggradation; LF5: loss of habitat
April - July	upstream migration		1.0%	LF6: high temp; LF7: water quality
May - June	upstream migration		7.0%	LF8: illegal fishing
Sept - Oct	Spawning		8.0%	LF9: habitat quality; LF10: Disturbance; LF11: disease
Sept - Oct	Spawning	350	1.0%	LF12: spawner predation
Oct - Feb	egg incubation	700,000	33.7%	LF13: sediment; LF14: early emergence; LF15: dewater redds; LF16: scour
Oct - Feb	egg incubation			LF18: overspawn; LF19: natural egg predation
Oct - Feb	egg incubation		0.0%	LF20: redd disturbance (non-human); LF21: redd disturbance (human)
Feb - July	early rearing		12.0%	LF22: water quality; LF23: instream complexity; LF24: low water; LF25: high water
				LF26: lack of food; LF27: competition - invasive species; LF28: competition - native species; LF29:
Feb - July	early rearing		18.0%	predation
Feb - July	early rearing		5.0%	LF30: disturbance; LF30.5: Aquifer drawdowns
Feb - July	early rearing		2.0%	LF31: disease
Feb - July	early rearing	114,450		LF32: hatchery introgression
April - July	estuary rearing		25.0%	LF33: lack of food; LF34: predation; LF35: competition/predation from exotics
April - July	estuary rearing		25.0%	LF37A-C: foreshore, intertidal and subtidal habitat;
April - July	estuary rearing	56,081	1.0%	LF38: industrial affects; LF39: disturbance
Aug - Year 2	early ocean rearing		25.0%	LF40: lack of food; LF41: water quality
Aug - Year 2	early ocean rearing	2,289		LF42: competition; LF43: nearshore predation
Year 2 - 4	Ocean rearing			LF44: offshore predation; LF45: competition with invasives
Year 2 - 4	Ocean rearing	801	0.6%	LF46: offshore habitat; LF47: pollutants; LF48: disease; LF49: harmful algae blooms
Year 2 - 4	Ocean rearing	500	37.6%	LF50: fishing
	Terminal return	500		
	Rate of Change	0.0%		


Assess biological impact by eliminating or reducing that source of mortality.

HOW TO VIEW RISK

- Stock specialists focus on salmon stocks
- Habitat specialists focus on habitat indicators
- RAMS focus on salmon interactions with critical habitat
- SARA focus on threats

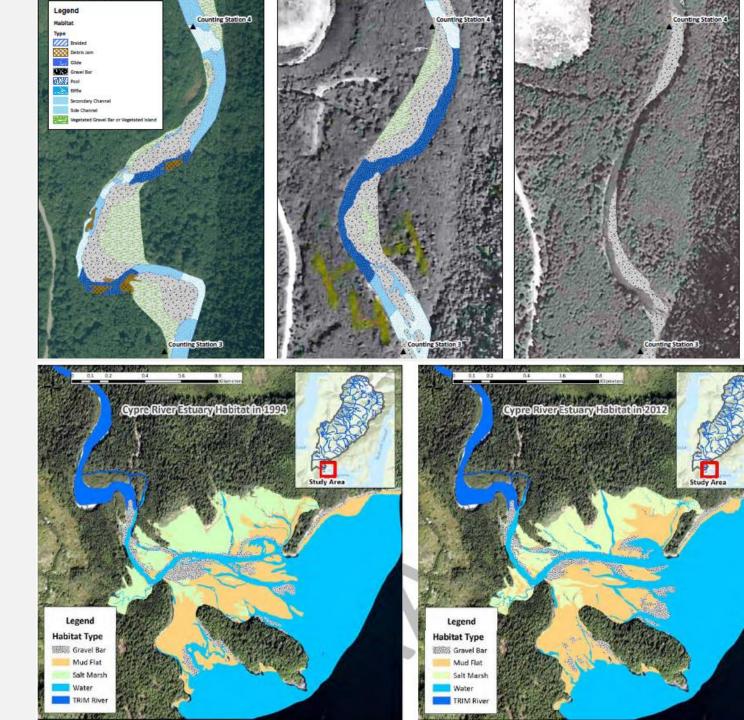
ystem Unit	Life Stage	Chinada	NA	Water Quality Freshwater, Estuarine & Marine:	Physical Habit
he river			Mortality 25%	Temperature, Chemistry, Dissolved	Floodplain quality &
r river - uplands	Migrating adults	3,000	20%	oxygen, Alkalinity, Toxins, etc.	Riparian condition, si connectivity and con
	Spawners		04.00	Total suspended solids, sediments &	Pool availability by %
r river - uplands	Eggs laid	3,330,000	84.0%	biota.	Edge habitat for rear
river to estuary	Smolts out	533,334		Nutrients and chlorophyll a	adequate large wood Spawning habitat qua
ary to Ocean	Adults produced	5,333	99.0%	Nutrients and chlorophyllia	Upland habitats supp
n	Caught in ocean	2,933	55%	Harmful algal blooms, pollution, etc.	Estuarine:
ary to upper river	Terminal return	2,400			Nearshore habitat in
	Rate of change	-20%			habitats, forage fish: Connectivity to fresh
	Recruits/Spawner	2.37		Hydrology Freshwater:	connectivity to mesh
degradation and	salmon declines			*	Species Interactions (p competition, exoticsp Anthropogenic Impact
0			r	а //	Freshwater only: Riparian vegetation
Natural Pressures:		Human Pressures			Terrestrial wildlife
Natural Pressures: Lithology/Soils changes		Freshwater & Estua	arine:	ant to the second se	Plant communities
Natural Pressures:	changes	Freshwater & Estua Land Use; e.g. Jmp surface runoff cha	arine: Rervious anges in	on:	Plant communities Estuarine only:
Natural Pressures: Lithology/Soils changes Watershed morphology Hydrology changes Climate impacts	r changes	Freshwater & Estua Land Use; e.g. Imp surface runoff cha drainage. E.g. For	arine: RECVIQUE anges in restry		
Natural Pressures: Lithology/Soils changes Watershed morphology Hydrology changes Climate impacts Physiography changes	r changes	Freshwater & Estua Land Use; e.g. Jmp surface runoff cha	arine: Recvious anges in restry Idrawals.	5	Estuarine only:
Natural Pressures: Lithology/Soils changes Watershed morphology Hydrology changes Climate impacts	r changes IS . parasitism.	Freshwater & Estua Land Use; e.g. Imp surface runoff cha drainage. E.g. For <u>Dams, Water with</u> Channel alteration Vegetation remov.	arine: RECVIQUE anges in estry Idrawals. ns.	s es	Estuarine only:
Natural Pressures: Lithology/Soils changes Watershed morphology Hydrology changes Climate impacts Physiography changes Vegetation changes/los	r changes is , parasitism,	Freshwater & Estua Land Use; e.g. Jmp surface runoff cha drainage. E.g. For Dams, Water with Channel alteration	arine: RECVIQUE anges in estry Idrawals. ns.	s es	Estuarine only:

STOCK, HABITAT & ECOSYSTEM STATUS

-Collate historical and current stock status and biological characteristics

-Gather information such as fishery impacts, fish health, hatchery influence, etc.

-High level habitat indicator status (e.g. ESSA report cards, Pacific Salmon Explorer) -> detailed Habitat Status Reports

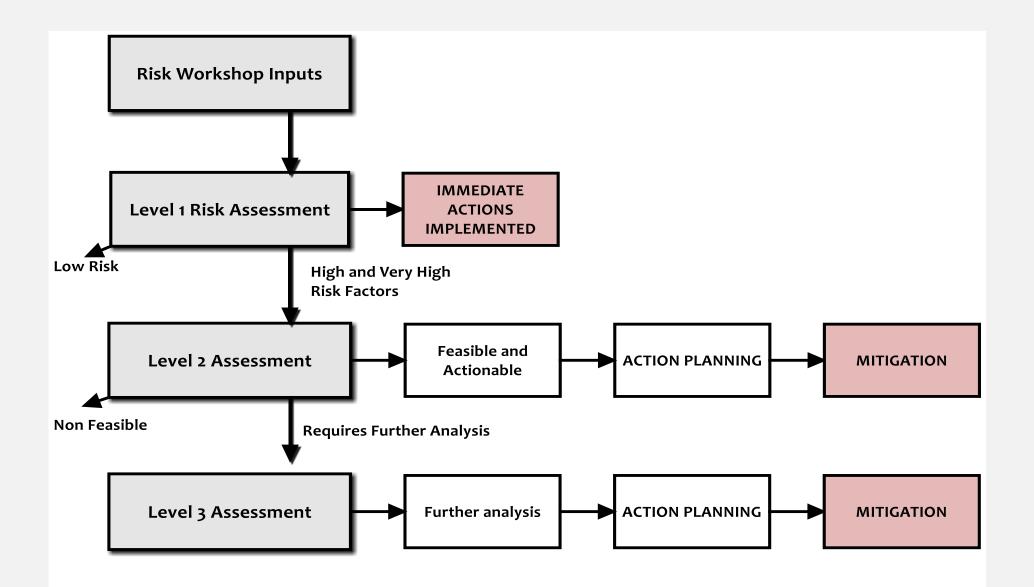

-Status of critical habitat and changes over time

-Pressure and State indicators

-Climate projections

HOLD RISK Workshop

- Include technical, local & traditional expertise
- Develop common understanding
- Identify and rank the major limiting factors posing risk to the productivity of salmon in the watershed/CU
- Identify knowledge gaps
- Develop a plan to mitigate high-risk components through a series of action items
- Identify funding sources


BARKLEY SOCKEYE RISK ASSESSMENT

1. Great Cer	1. Great Central Sockeye CU				2. Sproat Sockeye CU				3. Henderson Sockeye CU			
DESCRIPTION OF FACTOR		BIOLOGICAL RISK calculated for each factor limiting productive capacity		DESCRIPTION	DESCRIPTION OF FACTOR		CAL RISK or each factor productive acity	DESCRIPTION	BIOLOGICAL RISK calculated for each factor limiting productive capacity			
Life History Requirement	Issue/Limiting factor & id number	Current Biol Risk category	Future Biol Risk category	Life History Requirement	Issue/Limiting factor & id number	Current Biol Risk category	Future Biol Risk category	Life History Requirement	Issue/Limiting factor & id number	Current Biol Risk category	Future Biol Risk Category	
A. Terminal	Migration & Spa	awning		A. Terminal	A. Terminal Migration & Spawning				Migration & Spa	wning		
2. Large volume of preferred water (VOPW, low temp, high O2) in estuary	LF2: Significant reductions of VOPW in inlet & estuary with chronic to impacts on adult "fitness".	Moderate	High	2. Large volume of preferred water (VOPW, low temp, high O2) in estuary	LF2: Significant reductions of VOPW in inlet & estuary with chronic to impacts on adult "fitness".	Moderate	High	9. Stable channel banks and stable coarse bedload transport	LF10: Riparian disturbance resulting in bank erosion, increased bedload.	Very High	Very High	
 Favorable temperatures for low stress passage 	LF4: High temps slow or stop upstream migration	Moderate	Very High	4. Favorable temperatures for low stress passage	LF4: High temps slow or stop upstream migration	Moderate	Very High	11b. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. TRIB SPAWNERS ONLY	LF12B: Inadequate TRIB spawning habitat (i.e. CU production potential limited by initial fry recruitment).	High	Very High	
11b. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. TRIB SPAWNERS ONLY	LF12B: Inadequate TRIB spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Moderate	Moderate	11b. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. TRIB SPAWNERS ONLY	LF12B: Inadequate TRIB spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Moderate	Moderate	11. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. BEACH SPAWNERS ONLY	LF12: Inadequate BEACH spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Moderate	High	

9. Stable channel banks and stable coarse bedload transport	LF10: Riparian disturbance resulting in bank erosion, increased bedload.	Low	Moderate	3. Adequate maintenance flows to facilitate upstream passage of spawners	LF3: Low flows delay, prevent passage at control points (e.g. Henderson rapids) & increases pre- spawn losses.	Low	High	1. Safe holding habitat in estuary	LF1: Large losses from seals.	Moderate	Moderate
5. Unrestricted access through fishways, enumeration structures etc	LF5: Delays at fishways and during passage through fish counters	Low	Low	9. Stable channel banks and stable coarse bedload transport	LF10: Riparian disturbance resulting in bank erosion, increased bedload.	Low	Moderate	 Open access at all points to holding and/or spawning areas. 	LF8: Temperature or structural blockages delay access to spawning areas during late Sept- Nov spawning interval.	Moderate	none/Unk
 Open access at all points to holding and/or spawning areas. 	LF8: Temperature or structural blockages delay access to beach spawning areas during late Sept- Nov spawning interval.	Low	Low	5. Unrestricted access through fishways, enumeration structures etc	LF5: Delays at fishways and during passage through fish counters	Low	Low	3. Adequate maintenance flows to facilitate upstream passage of spawners	LF3: Low flows delay, prevent passage at control points (e.g. Henderson rapids) & increases pre- spawn losses.	Low	High
11. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. BEACH SPAWNERS ONLY	LF12: Inadequate BEACH spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Low	Low	11. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. BEACH SPAWNERS ONLY	LF12: Inadequate BEACH spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Low	Low	4. Favorable temperatures for low stress passage	LF4: High temps slow or stop upstream migration	Low	High
 Safe holding habitat in estuary 	LF1: Large losses from seals.	Very Low	Low	1. Safe holding habitat in estuary	LF1: Large losses from seals.	Very Low	Low	5. Unrestricted access through fishways, enumeration structures etc	LF6: Structural Blockages	Low	Moderate
3. Adequate maintenance flows to facilitate upstream passage of spawners	LF3: Low flows delay, prevent passage at control points (e.g. Henderson rapids) & increases pre- spawn losses.	Very Low	Low	5. Unrestricted access through fishways, enumeration structures etc	LF6: Structural Blockages	Very Low	none/Unk	8. Adequate channel depth including frequency of deep holding pools with cover	LF9: Shallowing or loss of "predation-free", summer holding "pools" due to sediment infill.	Low	Moderate

5. Unrestricted	LF6: Structural	Very Low	none/Unk	6. VOPW	LF7. Reductions to	Very Low	Low	2. Large volume	LF2: Significant	Low	Low
access through fishways, enumeration structures etc	Blockages	Very Low	noneyonk	ensures low stress, predator & pathogen free, lake refuge.	lake VOPW	Very Low		of preferred water (VOPW, low temp, high O2) in estuary	reductions of VOPW in inlet & estuary with chronic to impacts on adult "fitness".	LOW	
6. VOPW ensures low stress, predator & pathogen free, lake refuge.	LF7. Reductions in the lake VOPW	Very Low	none/Unk	 Open access at all points to holding and/or spawning areas. 	LF8: Temperature or structural blockages delay access to spawning areas during late Sept- Nov spawning interval.	Very Low	none/Unk	13. Compliance and good management	Lfnew: unreported catch / poaching / misallocation from DNA	Low	none/Unk
8. Adequate channel depth including frequency of deep holding pools with cover	LF9: Shallowing or loss of "predation-free", summer holding "pools" due to sediment infill.	Very Low	none/Unk	8. Adequate channel depth including frequency of deep holding pools with cover	LF9: Shallowing or loss of "predation-free", summer holding "pools" due to sediment infill.	Very Low	none/Unk	6. VOPW ensures low stress, predator & pathogen free, lake refuge.	LF7. Reductions to lake VOPW	Very Low	Moderate
14. Lack of anthropogenic disturbance	LFnew: Direct disturbance of fish by human activities.	Very Low	none/Unk	14. Lack of anthropogenic disturbance	LFnew: Direct disturbance of fish by human activities.	Very Low	Low	5. Unrestricted access through fishways, enumeration structures etc	LF5: Delays at fishways and during passage through fish counters	Very Low	none/Unk
10. Suitable water quality- levels of bacteria and toxic substances	LF11: Poor water quality	Very Low	none/Unk	10. Suitable water quality- levels of bacteria and toxic substances	LF11: Poor water quality	Very Low	none/Unk	14. Lack of anthropogenic disturbance	LFnew: Direct disturbance of fish by human activities.	Very Low	none/Unk
12. Low levels of predation on adults.	LF13: High proportion of spawners lost to bears	Very Low	none/Unk	12. Low levels of predation on adults.	LF13: High proportion of spawners lost to bears	Very Low	none/Unk	10. Suitable water quality- levels of bacteria and toxic substances	LF11: Poor water quality	Very Low	Low
 Compliance and good management 	Lfnew: unreported catch / poaching / misallocation from DNA	Very Low	none/Unk	13. Compliance and good management	Lfnew: unreported catch / poaching / misallocation from DNA	Very Low	none/Unk	12. Low levels of predation on adults.	LF13: High proportion of spawners lost to bears	Very Low	Low

MOVING FROM RISK ASSESSMENT TO ACTION

SCENARIO BUILDING & EVALUATION

Rank scenarios of actions to address high risk / highest ranked limiting factors

				initial	
				change in	
				terminal	annual
		starting	terminal	return in	rate of
	Action / Limiting factor	population	return	fish	change
Base case	current	300	240	-60	-20%
Scenario 1	Reduce marine harvest by 50%	300	303	3	1%
Scenario 3	eliminate adult pinniped predation by 100%	300	305	5	2%
Scenario 2	Improve lower river rearing by 4%	300	629	329	110%

- Assess feasibility
- Identify lead jurisdiction
- Develop action plan for agreed actions

OUTPUTS / LEGACY

- General consensus ranked list of factors limiting productivity and knowledge gaps
- Strategic Plan 'owned' by local group. Incorporates prioritization and sequencing of appropriate restoration actions
- Specific action plans for highest risks, e.g. fishery plans, hatchery plans, restoration plan, water use plan, etc.

LESSONS LEARNED

- Need a simple and repeatable process
- Need to develop logical strategies for action ie. begin with upslope restoration as instream and estuarine restoration are impacted by upslope geological and hydrological processes
- Need to develop products that can be modified into funding proposals by local communities

